Part Number Hot Search : 
F5011CT AC130 TS2951 A6130DL MOG2388A SMBJ40 W681307 2N4068
Product Description
Full Text Search
 

To Download XCM520AA03DR-G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 XCM520 Series
GENERAL DESCRIPTION
ETR2427-002a
600mA Synchronous Step-Down DC/DC Converter + Dual LDO Regulator
The XCM520 series is a multi chip module which comprises of a 600mA driver transistor built-in synchronous step-down DC/DC converter and a dual CMOS LDO regulator. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. The XCM520 can replace this dual DC/DC to eliminate one inductor and reduce output noise. The DC/DC converter with a built-in 0.42 P-channel MOS and a 0.52 N-channel MOS provides a high efficiency, stable power supply up to 600mA to using only a coil and two ceramic capacitors connected externally. The highly accurate, low noise, dual CMOS LDO regulator includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensation circuits internally. The series is also fully compatible with low ESR ceramic capacitors. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of each regulator to be turned off independently, resulting in greatly reduced power consumption.
APPLICATIONS
Mobile phones, Smart phones Bluetooth headsets WLAN PC cards Portable HDDs, SSDs PDAs, PNDs, UMPCs MP3 players, Media players Portable game consoles Cordless phones, Radio communication equipment
FEATURES

Driver Transistor Switching Transistor Input Voltage Range High Efficiency Output Current Soft-Start Control : 0.42 P-channel MOS Built-in : 0.52 N-channel MOS Built-in : 2.7V 6.0V 4.0V
Output Voltage Range : 0.8V : 600mA
: 92% (TYP.) *
Oscillation Frequency : 1.2MHz,3.0MHz (15%) : Built-In Soft-Start : Fixed PWM, Auto PWM/PFM
Current Limiter Circuit : Constant Current & Latching
*Performance depends on external components and wiring on PCB wiring.

TYPICAL APPLICATION CIRCUIT
VOUT1 1.8V CL2 1F CIN1 1F VIN 3.3V CIN2 4.7F
1 2 3
V OUT2
EN2
V OUT1 12 V SS 11
EN1 10
VOUT2 1.2V CL1 1F
VIN1 VIN2 PGND Lx
4
EN3 9 AGND 8 V OUT3 7
5
6
CL3 10F VOUT3 2.3V
L 1.5H
* The dashed lines denote the connection using through-holes at the backside of the PC board. * The above circuit uses XCM520AA01 series. * The DC/DC block VOUT3 is connected to the dual LDO regulator VIN1 in this connection. * Also, it is possible to operate two VIN independently.
: 150mA (Limiter 300mA TYP.) : 100mV @ 100mA : 1.5V~6.0V : 0.8V~5.0V (0.05V increments) : 2% (VOUT>1.5V) 30mV (VOUT 1.5V) Low Power Consumption : 25 A (TYP.) Stand-by Current : Less than 0.1 A(TYP.) High Ripple Rejection : 70dB @1kHz Low Output Noise Operating Temperature Range : -40 ~+85 Low ESR Capacitor : Ceramic Capacitor Compatible Package : USP-12B01 Standard Voltage Combinations : VOUT1 VOUT2 VOUT3 XCM520xx01D 1.8V 1.2V 2.3V XCM520xx02D 1.8V 1.3V 2.3V XCM520xx03D 1.8V 1.2V 2.2V XCM520xx04D 1.8V 1.2V 2.8V XCM520xx05D 1.0V 1.2V 1.8V XCM520xx06D 0.8V 1.5V 1.8V Maximum Output Current Dropout Voltage Operating Voltage Range Output Voltage Range High Accuracy
*Other combinations are available as semi-custom products.
Environmentally Friendly : EU RoHS Compliant, Pb Free
1/43
XCM520 Series
PIN CONFIGURATIOIN
PIN No
VOUT2 EN2 VIN1 VIN2 PGND Lx
1
XCM520 VOUT2 EN2 VIN1 VIN2 PGND Lx VOUT3 AGND EN3 EN1 VSS VOUT1
XC6401 VOUT2 EN2 VIN
XC9235/XC9236
VOUT2
VOUT1
12
VOUT1 VSS EN1 EN3 AGND VOUT3
1 2 3 4 5 6 7 8 9 10 11 12
XC6401
2
EN2
VSS
11
3
VIN
EN1
10
VIN PGND Lx VOUT AGND CE EN1 VSS VOUT1
4
VIN
EN/MODE
9
XC9235/9236
5
PGND
AGND
8
6
Lx
VOUT3
7
(TOP VIEW)
VOUT1 12 VSS 11 EN1 10
EN3/MODE 9
1 VOUT2
*1
2 EN2 3 VIN1 4 VIN2 5 VSSD
NOTE: * The two heat-sink pads on the back side are electrically isolated in the package. *1: The pad of the regulator should be VSS level. *2: The pad of the DC/DC should be VSS level. * The DC/DC ground pin (No. 5 and 8) should be connected for use. * The two pads are recommended to open on the board, but care must be taken for voltage level of each heat-sink pad when they are electrically connected.
VSSA 8 VOUT3 7
*2
6
Lx
(TOP VIEW)
PIN ASSIGNMENT
PIN No 1 2 3 4 5 6 7 8 9 10 11 12 XCM520 VOUT2 EN2 VIN1 VIN2 PGND Lx VOUT3 AGND EN3 EN1 VSS VOUT1 FUNCTIONS Voltage Regulator Output2 Voltage Regulator ON/OFF Control 2 Voltage Regulator Power Input DC/DC Power Input DC/DC Power Ground DC/DC Inductor Pin DC/DC Output Voltage DC/DC Analog Ground DC/DC ON/OFF Control Voltage Regulator ON/OFF Control 1 Voltage Regulator Ground Voltage Regulator Output Voltage 1
2/43
XCM520 Series
PRODUCT CLASSIFICATION
Ordering Information XCM520 DESIGNATOR
(*1)
DESCRIPTION Options Output Voltage combination Packages Taping Type
(*2)
SYMBOL See the chart below See the chart below DR-G USP-12B01
DESCRIPTION
(*1) (*2)
The XCM520 series is Halogen and Antimony free as well as being fully RoHS compliant. The device orientation is fixed in its embossed tape pocket.
DESIGNATOR
AA AB AC AD AE AF AG AH
Combination of XC6401 series and XC9235/XC9236 series
COMBINATION OF EACH IC XC6401FF** XC6401FF** XC6401FF** XC6401FF** XC6401FF** XC6401FF** XC6401FF** XC6401FF** XC9235A**D XC9235A**C XC9236A**D XC9236A**C XC9235B**D XC9235B**C XC9236B**D XC9236B**C DESCRIPTION F i x e d P W M , fOSC=3.0MHz F i x e d P W M , fOSC=1.2MHz Auto PWM/PFM, fOSC=3.0MHz Auto PWM/PFM, fOSC=1.2MHz F i x e d P W M , fOSC=3.0MHz, VOUT3 CL Discharge F i x e d P W M , fOSC=1.2MHz, VOUT3 CL Discharge Auto PWM/PFM, fOSC=3.0MHz, VOUT3 CL Discharge Auto PWM/PFM, fOSC=1.2MHz, VOUT3 CL Discharge
DESIGNATOR
01 02 03 04 05 06 1.8 1.8 1.8 1.8 1.0 0.8
Output Voltage
VOUT2(VR_2ch) 1.2 1.3 1.2 1.2 1.2 1.5 VOUT3(DC/DC) 2.3 2.3 2.2 2.8 1.8 1.8
VOUT1(VR_1ch)
*This series are semi-custom products.
For other combinations of output voltages please consult with your Torex sales contact.
3/43
XCM520 Series
BLOCK DIAGRAMS
XC9235A/XC9236A XC9235B/XC9236B
Available with CL Discharge, High Speed Soft-Start
* XC9235 control scheme is a fixed PWM because that the "CE/MODE Control Logic" outputs a low level signal to the "PWM/PFM Selector". * XC9236 control scheme is an auto PWM/PFM switching because the "CE/MODE Control Logic" outputs a high level signal to the "PWM/PFM Selector".
XC6401FF
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.
MAXIMUM ABSOLUTE RATINGS
PARAMETER VIN1 Voltage VOUT Current VOUT Voltage EN1,EN2 Voltage VIN2 Voltage Lx Voltage VOUT3 Voltage EN3 Voltage Lx Current Power Dissipation USP12-B01 USP12-B01 *3 (PCB mounted) SYMBOL VIN1 IOUT1+IOUT2* VEN1 / VEN2 VIN2 VLX VOUT3 VEN3 ILX Pd Topr Tstg
1
RATINGS 6.5 700
*2
UNITS V mA V V V V V V mA
VOUT1 / VOUT2
VSS-0.3VIN1+0.3 VSS-0.36.5 -0.36.5 -0.3VIN2+0.36.5 -0.36.5 -0.36.5 1500 150 800 (1ch operate) 600 (both 2ch operate) -40+85 -55+125
mW
Operating Temperature Range Storage Temperature Range
*2. Pd > { (VIN1 - VOUT1)xIOUT1+(VIN1 - VOUT2)xIOUT2 } *3. The power dissipation figure shown is PCB mounted. for each channel.
*1. Rating is defined as a total of VR1 and VR2 in the VR bloc. Please refer to page 41 for details. Also, the power dissipation value above is
4/43
XCM520 Series
ELECTRICAL CHARACTERISTICS
XCM520AB, AD (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency
(*2)
VOUT3 = 1.8V, fOSC=1.2MHz, Ta = 25
CONDITIONS When connected to external components, VIN2 = VEN3 =5.0V, IOUT3 =30mA When connected to external components,
VIN2=VOUT(E)+2.0V, VEN3=1.0V
(*8)
SYMBOL VOUT3 VIN2 IOUT3MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI
MIN. 1.764 2.7 600 1.00 1020 120
TYP. 1.800 1.40 22 15 0 1200 160 200
MAX. 1.836 6.0 1.78 50 33 1.0 1380 200 300 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 -
UNITS CIRCUIT V V mA V A A kHz mA % % % %
VEN3=VIN2, VOUT3=0V, (*1, *10) Voltage which Lx pin holding "L" level XCM520AB VIN2=VEN3=5.0V, VOUT3 =VOUT3(E) 1.1V XCM520AD VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E) 1.1V When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = 1.0V, IOUT3 = 100mA When connected to external components, (*11) VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11) VEN3 = VIN2 = (C-1) IOUT3 = 1mA VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V 1.1V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) When connected to external components,
VEN3=VIN2=VOUT3(E)+1.2V,IOUT3= 100mA
(*7)
100 (*3)
92 0.35 0.42 0.45 0.52 0.01 0.01 1050 100
RL H Lx SW "H" ON Resistance 1 RL H Lx SW "H" ON Resistance 2 RL L Lx SW "L" ON Resistance 1 RL L Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*5) Lx SW "L" Leak Current ILEAKL (*9) Current Limit ILIM Output Voltage VOUT3/ Temperature (VOUT3 topr) Characteristics CE "H" Level Voltage VEN3H
VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX = 0V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V VOUT3 = 30mA -40 Topr
VOUT3= 0V,
900 -
A A mA ppm/
85
Applied voltage to VEN3, 0.65 6.0 V (*10) Voltage changes Lx to "H" level VOUT3=30V, Applied voltage to VEN3, CE "L" Level Voltage VEN3L VSS 0.25 V (*10) Voltage changes Lx to "L" level CE "H" Current IEN3H VIN2 = VEN3 = 5.0V, VOUT3 = 0V - 0.1 0.1 A CE "L" Current IEN3L VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V - 0.1 0.1 A When connected to external components, 0.5 1.0 2.5 ms Soft Start Time tSS VEN3 = 0V VIN2 , VOUT3 = 1mA VOUT3 (E) VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 Integral Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1 resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at Short Protection 0.900 1.125 V VSHORT 1 resistance, VOUT3 voltage which Lx becomes "L" 0.675 Threshold Voltage level within 1ms Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3(E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM520A/B series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. *The electrical characteristics above are when the voltage regulator block is in stop.
5/43
XCM520 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM520AA/AC (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency
(*2)
VOUT3 = 1.8V, fOSC= 3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components, (*8) VIN2=VOUT3(E)+2.0V, VEN3=1.0V VEN3 = VIN2 , VOUT3 = 0V , (*1, *10) Voltage which Lx pin holding "L" level XCM520AA VIN2=VEN3=5.0V, VOUT3=VOUT3(E) 1.1V XCM520AC VIN2 = 5.0V, VEN = 0V, VOUT3 = VOUT3(E) 1.1V When connected to external components, VIN2 = VOUT3(E) + 2.0V , VEN3=1.0V, VOUT3 = 100mA When connected to external components, (*11) VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , IOUT3 = 1mA (*11) VEN3 = VIN2 = (C-1) IOUT3 = 1mA VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V 1.1V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) When connected to external components, (*7) VEN3 = VIN2 VOUT3 (E) + 1.2V, VOUT3 = 100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 =5.0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 5.0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V VOUT3 = 30mA -40 Topr 85
(*10)
SYMBOL VOUT3 VIN2 IOUT3MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI
MIN. 1.764 2.7 600 1.00 2550 170
TYP. 1.800 1.40 46 21 0 3000 220 200
MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1.0 1350 6.0 0.25 0.1
UNITS CIRCUIT V V mA V A A kHz mA % % % %
100 900 0.65 VSS - 0.1
86 0.35 0.42 0.45 0.52 0.01 0.01 1050 100 -
RL H Lx SW "H" ON Resistance 1 RL H Lx SW "H" ON Resistance 2 RL L Lx SW "L" ON Resistance 1 RL L Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*5) Lx SW "L" Leak Current ILEAKL (*9) ILIM Current Limit Output Voltage VOUT3/ Temperature topr) (VOUT3 Characteristics EN "H" Level Voltage EN "L" Level Voltage EN "H" Current EN "L" Current VENH VEN3L IEN3H IEN3L
A A mA ppm/ V V A
VOUT3 =0V, Applied voltage to VEN3,
Voltage changes Lx to "H" level VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to "L" level VIN2 = VEN3 =5.0V, VOUT3 = 0V
VIN2 =5.0V, VEN3 = 0V, VOUT3 = 0V - 0.1 0.1 A When connected to external components, 0.5 0.9 2.5 ms Soft Start Time tSS VEN3 = 0V VIN2 , VOUT3 = 1mA VOUT3 (E) VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 Integral Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1 resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at Short Protection 0.675 0.900 1.125 V VSHORT 1 resistance, VOUT3 voltage which Lx becomes "L" Threshold Voltage level within 1ms Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM520AA series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. *The electrical characteristics above are when the voltage regulator block is in stop.
6/43
XCM520 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM520AF,AH (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency
(*2)
VOUT3=1.8V, fOSC=1.2MHz, Ta=25
CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components,
VIN2 = VOUT3(E)+2.0V, VEN3=1.0V
(*8)
SYMBOL VOUT3 VIN2 IOUT3MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI
MIN. 1.764 2.7 600 1.00 1020 120
TYP. 1.800 1.40 22 15 0 1200 160 200
MAX. 1.836 6.0 1.78 50 33 1.0 1380 200 300 0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.4 20.0 1.150 450
UNITS CIRCUIT V V mA V A A kHz mA % % % %
VEN3 = VIN2, VOUT3 = 0V, Voltage which Lx pin holding "L" level
VIN2 =VEN3= 5.0V, VOUT3= VOUT3(E) 1.1V
(*1, *10)
XCM520AF XCM520AH 1.1V
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E)
When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3=100mA When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA VEN3 = VIN2 = (C-1) VOUT3 = 1mA
(*11) (*11)
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E)
0.9V
100 900 -
92 0.35 0.42 0.45 0.52 0.01 1050 100 0.25 0.900 300
RL H Lx SW "H" ON Resistance 1 RL H Lx SW "H" ON Resistance 2 RL L Lx SW "L" ON Resistance 1 RL L Lx SW "L" ON Resistance 2 (*5) Lx SW "H" Leak Current ILEAKH (*9) ILIM Current Limit Output Voltage VOUT3/ Temperature topr) (VOUT3 Characteristics EN "H" Level Voltage EN "L" Level Voltage EN "H" Current EN "L" Current Soft Start Time Integral Latch Time Short Protection Threshold Voltage CL Discharge VENH VEN3L IEN3H IEN3L tSS tLAT VSHORT RDCHG
1.1V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) When connected to external components, (*7) VEN3 = VIN2 = VOUT3 (E) + 1.2V, VOUT3 = 100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V IOUT3 = 30mA -40 Topr 85
(*10)
A mA ppm/ V V A A ms ms V
VOUT3 =0V, Applied voltage to VEN3,
Voltage changes Lx to "H" level VOUT3 =0V, Applied voltage to VEN3, (*10) Voltage changes Lx to "L" level VIN2 = VEN3 =5.0V, VOUT3 = 0V VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V When connected to external components, VEN3 = 0V VIN2 , VOUT3 = 1mA VOUT3(E) VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 (*6) Short Lx at 1 resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at 1 resistance, VOUT3 voltage which Lx becomes "L" level within 1ms VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open
0.65 VSS - 0.1 - 0.1 1.0 0.675 200
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN2 - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM520AF series exclude IPFM and DLIMIT_PFM because those are only for the PFM control's functions. *The electrical characteristics above are when the voltage regulator block is in stop.
7/43
XCM520 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM520AE,AG (DC/DC BLOCK)
PARAMETER Output Voltage Operating Voltage Range Maximum Output Current UVLO Voltage Supply Current Stand-by Current Oscillation Frequency PFM Switching Current PFM Duty Limit Maximum Duty Ratio Minimum Duty Ratio Efficiency
(*2)
VOUT3=1.8V, fOSC=3.0MHz, Ta=25
CONDITIONS When connected to external components, VIN2 = VEN3 = 5.0V, IOUT3 = 30mA When connected to external components, (*8) VIN2=VOUT3(E)+2.0V,VEN3=1.0V VEN3 = VIN2, VOUT3 = 0V, Voltage which Lx pin holding "L" level VIN2=VEN3=5.0V, VOUT3 = VOUT3(E) 1.1V VIN2 = 5.0V, VEN3 = 0V, VOUT3 = VOUT3(E)
(*1, *10)
SYMBOL VOUT3 VIN2 VOUT3MAX VUVLO IDD ISTB fOSC IPFM DTYLIMIT_PFM DMAX DMIN EFFI
MIN. 1.764 2.7 600 1.00 2550 170 0.9V 1.1V 100 900 -
TYP. 1.800 1.40 46 21 0 3000 220 200 86 0.35 0.42 0.45 0.52 0.01 1050 100 0.32 0.900 300
MAX. 1.836 6.0 1.78 65 35 1.0 3450 270 300 0 0.55 0.67 0.66 0.77 1.0 1350 6.0 0.25 0.1 0.1 0.5 20.0 1.150 450
UNITS CIRCUIT V V mA V A A kHz mA % % % %
XCM520AE XCM520AG 1.1V
When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3=1.0V, VOUT3 = 100mA When connected to external components, VIN2 = VOUT3(E) + 2.0V, VEN3 = VIN2 , VOUT3 = 1mA VEN3 = VIN2 = (C-1) VOUT3 = 1mA
(*11) (*11)
VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E)
RL H Lx SW "H" ON Resistance 1 RL H Lx SW "H" ON Resistance 2 RL L Lx SW "L" ON Resistance 1 RL L Lx SW "L" ON Resistance 2 (*5) ILEAKH Lx SW "H" Leak Current (*9) ILIM Current Limit Output Voltage VOUT3/ Temperature topr) (VOUT3 Characteristics EN "H" Level Voltage EN "L" Level Voltage EN "H" Current EN "L" Current Soft Start Time Integral Latch Time Short Protection Threshold Voltage CL Discharge VEN3H VEN3L IEN3H IENL tSS tLAT VSHORT RDCHG
When connected to external components, VEN3 = VIN2 VOUT3 (E)+1.2V, VOUT3 =100mA (*3) VIN2 = VEN3 = 5.0V, VOUT3 = 0V, ILX = 100mA (*3) VIN2 = VEN3 = 3.6V, VOUT3 = 0V, ILX = 100mA (*4) VIN2 = VEN3 = 0V (*4) VIN2 = VEN3 = 3.6V VIN2 = VOUT3 = 5.0V, VEN3 = 0V, LX= 0V (*7) VIN2 = VEN3 = 5.0V, VOUT3 = VOUT3 (E) 0.9V IOUT3 = 30mA -40 Topr 85
(*10)
A mA ppm/ V V A A ms ms V
VOUT3 = 0V, Applied voltage to VEN3,
Voltage changes Lx to "H" level Voltage changes Lx to "L" level VIN2 = VEN3 = 5.0V, VOUT3 = 0V
0.65 VSS - 0.1 - 0.1 1.0 0.675 200
VOUT3 = 0V, Applied voltage to VEN3,
(*10)
VIN2 = 5.0V, VEN3 = 0V, VOUT3 = 0V When connected to external components, VEN3 = 0V VIN2 , VOUT3 =1mA VOUT3(E) VIN2 = VEN3 = 5.0V, VOUT3 = 0.8 (*6) Short Lx at 1 resistance Sweeping VOUT3, VIN2 = VEN3 = 5.0V, Short Lx at 1 resistance, VOUT3 voltage which Lx becomes "L" level within 1ms VIN2 = 5.0V LX = 5.0V VEN3 = 0V VOUT3 = open
Test conditions: Unless otherwise stated, VIN2 = 5.0V, VOUT3 (E) = Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage output current ) ( input voltage input current) } 100 *3: ON resistance ( )= (VIN - Lx pin measurement voltage) 100mA *4: Design value *5: When temperature is high, a current of approximately 10 A (maximum) may leak. *6: Time until it short-circuits VOUT3 with GND via 1 of resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VOUT3 (E)+1.2V<2.7V, VIN2=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H" VIN2 VIN2 - 1.2V, "L" + 0.1V - 0.1V *11: XCM520AE series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control's functions. *The electrical characteristics above are when the voltage regulator block is in stop.
8/43
XCM520 Series
ELECTRICAL CHARACTERISTICS (Continued)
PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz SETTING VOLTAGE VOUT3(E) 1.2 1.2V VOUT3(E) 1.75 1.8V VOUT3(E) 3.0MHz SETTING VOLTAGE VOUT3(E) 1.2 1.2V VOUT3(E) 1.75 1.8V VOUT3(E) MIN. 140 130 120 TYP. 180 170 160 (mA) MAX. 240 220 200 (mA) MAX. 350 300 270
MIN. 190 180 170
TYP. 260 240 220
Measuring PFM Duty Limit, VIN2 Voltage
fOSC (C-1) 1.2MHz VOUT3(E)+0.5V 3.0MHz VOUT3(E)+1.0V
Minimum operating voltage is 2.7V ex.) Although when VOUT3(E) = 1.2V, fOSC= 1.2MHz, (C-1) = 1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
Soft-Start Time Chart (XCM520AE/XCM520AF/XCM520AG/XCM520AH Series Only)
PRODUCT SERIES fOSC 1200kHz XCM520AF 1200kHz 1200kHz 1200kHz XCM520AH 1200kHz 1200kHz XCM520AE/AG 3000kHz 3000kHz OUTPUT VOLTAGE 0.8 1.5 1.8 2.5 0.8 2.5 0.8 1.8 VOUT3(E)<1.5 VOUT3(E)<1.8 VOUT3(E)<2.5 VOUT3(E)<4.0 VOUT3(E)<2.5 VOUT3(E)<4.0 VOUT3(E)<1.8 VOUT3(E)<4.0 MIN. TYP. 0.25 0.32 0.25 0.32 0.25 0.32 0.25 0.32 MAX. 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 ms UNITS
9/43
XCM520 Series
ELECTRICAL CHARACTERISTICS (Continued)
XCM520 Series VR Block (VR1/VR2: EN_ Active High, without Pull-down resistors)
PARAMETER Output Voltage Maximum Output Current Load Regulation Dropout Voltage
(*5)
Ta=25
TYP. VOUT (T) 15 E-1 E-2
(*4)
SYMBOL VOUT(E)
(*2)
CONDITIONS IOUT=30mA VOUT(T)1.5V VOUT(T)<1.5V IOUT 100mA
MIN. X0.98 -0.03 150
(*3) (*3)
MAX. X1.02 +0.03 60
(*3) (*3)
UNITS V mA mV mV mV
CIRCUIT
IOUTMAX VOUT Vdif1 Vdif2 ISS ISTB VOUT / ( VIN1 VIN1 VOUT / ( Topr VOUT) VOUT)
VIN1=VOUT (T) + 1.0V 1mA IOUT=30mA IOUT=100mA VIN1=VEN=VOUT (T) + 1.0V, IOUT=0mA VIN1=VOUT (T) + 1.0V, VEN=VSS VOUT(T)+1.0V VIN1 6.0V VEN=VIN1, IOUT=30mA IOUT=30mA -40 Topr 85 VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC IOUT=30mA, f=1kHz VIN1=VOUT (T) + 1.0V, VEN=VIN1 VIN1=VOUT (T) + 1.0V, VEN=VIN1
Supply Current Stand-by Current Input Regulation Input Voltage Output Voltage Temperature Characteristics Ripple Rejection Limit Current Short Current EN "H" Level Voltage EN "L" Level Voltage EN "H" Level Current EN "L" Level Current NOTE:
(*9) (*8)
1.5 1.30 -
25 0.01 0.01 100 70 300 30 -
45 0.10 0.20 6.0 6 0.25 0.10 0.10
A A %/V V ppm/ dB mA mA V V A A
PSRR ILIM ISHORT VENH VENL IENH IENL
VIN1=VEN=VOUT (T) + 1.0V VIN1= VOUT (T) + 1.0V, VEN=VSS
-0.10 -0.10
*1 : Unless otherwise stated, VIN1=VOUT(T)+1.0V *2 : VOUT(E) : Effective output voltage (I.e. the output voltage when "VOUT(T) 1.0V" is provided at the VIN pin while maintaining a certain IOUT value). *3 : Please see the Voltage Chart for each voltage of VOUT(E). *4 : VOUT(T) : Nominal output voltage *5 : Vdif={VINa
(*7)
If VOUT (T)1.45V, MIN VOUT (T) - 30mV, MAX VOUT (T) + 30mV
-VOUTa
(*6)
}
*6 : VOUT1=A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT {VOUT(T)+1.0V} is input. *7 : VIN1=The input voltage when VOUT1 appears as input voltage is gradually decreased. *8 : When VOUT(T)4.5V, 5.5VVIN16.0V *9 : When VOUT(T) 4.8V, VIN1=5.75VDC+0.5Vp-pAC *The electrical characteristics above are when the DC/DC block is in stop.
10/43
XCM520 Series
OUTPUT VOLTAGE CHART
Voltage Chart 1
NOMINAL OUTPUT VOLTAGE (V) VOUT(T) 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 MIN. 0.770 0.820 0.870 0.920 0.970 1.020 1.070 1.120 1.170 1.220 1.270 1.320 1.370 1.420 1.470 1.519 1.568 1.617 1.666 1.715 1.764 1.813 1.862 1.911 1.960 2.009 2.058 2.107 2.156 2.205 2.254 2.303 2.352 2.401 2.450 2.499 2.548 2.597 2.646 2.695 2.744 2.793 2.842 2.891 E-1 OUTPUT VOLTAGE (V) VOUT MAX. 0.830 0.880 0.930 0.980 1.030 1.080 1.130 1.180 1.230 1.280 1.330 1.380 1.430 1.480 1.530 1.581 1.632 1.683 1.734 1.785 1.836 1.887 1.938 1.989 2.040 2.091 2.142 2.193 2.244 2.295 2.346 2.397 2.448 2.499 2.550 2.601 2.652 2.703 2.754 2.805 2.856 2.907 2.958 3.009 35 55 110 160 40 60 120 170 45 65 140 180 50 75 150 200 TYP. 300 200 100 80 65 60 55 DROPOUT VOLTAGE 1 (mV) Vdif1 MAX. 700 600 500 400 300 200 100 TYP. 400 350 270 240 200 180 165 E-2 DROPOUT VOLTAGE 2 (mV) Vdif2 MAX. 800 700 600 500 400 300 250
11/43
XCM520 Series
DROPOUT VOLTAGE CHART (Continued)
Voltage Chart 2
NOMINAL OUTPUT VOLTAGE (V) VOUT(T) 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 MIN. 2.940 2.989 3.038 3.087 3.136 3.185 3.234 3.283 3.332 3.381 3.430 3.479 3.528 3.577 3.626 3.675 3.724 3.773 3.822 3.871 3.920 3.969 4.018 4.067 4.116 4.165 4.214 4.263 4.312 4.361 4.410 4.459 4.508 4.557 4.606 4.655 4.704 4.753 4.802 4.851 4.900 OUTPUT VOLTAGE (V) VOUT MAX. 3.060 3.111 3.162 3.213 3.264 3.315 3.366 3.417 3.468 3.519 3.570 3.621 3.672 3.723 3.774 3.825 3.876 3.927 3.978 4.029 4.080 4.131 4.182 4.233 4.284 4.335 4.386 4.437 4.488 4.539 4.590 4.641 4.692 4.743 4.794 4.845 4.896 4.947 4.998 5.049 5.100 30 45 100 150 TYP. E-1 DROPOUT VOLTAGE 1 (mV) Vdif1 MAX. TYP. E-2 DROPOUT VOLTAGE 2 (mV) Vdif2 MAX.
12/43
XCM520 Series
TYPICAL APPLICATION CIRCUIT
CL2
1 2
VOUT2 EN2 VIN1
VOUT1 12
CL1
VSS 11 EN1 10
CIN1
3
VIN
CIN2
4 VIN2
EN3/MODE 9 AGND 8
VOUT3 7
L
5
PGND
Lx
CL3
6
DC/DC BLOCK
CIN1 CL1 CL2 L CIN2 CL2 : : : : : : 1F 1F 1F
fOSC=3.0MHz
(Ceramic) (Ceramic) (Ceramic) (NR3015 TAIIYO YUDEN) (Ceramic) (Ceramic)
DC/DC BLOCK
CIN1 CL1 CL2 L CIN2 CL2 : : : : : : 1F 1F 1F
fOSC=1.2MHz
(Ceramic) (Ceramic) (Ceramic) (NR4018 TAIIYO YUDEN) (Ceramic) (Ceramic)
1.5 H 4.7 F 10 F
4.7 H 4.7 F 10 F
OPERATIONAL EXPLANATION
DC/DC BLOCK
The DC/DC block of the XCM520 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) By using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback voltage from the VOUT3 pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer.
13/43
XCM520 Series
OPERATIONAL EXPLANATION (Continued)
The current limiter circuit of the XCM520 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. When the P-channel MOS driver transistor is turned off, the limiter circuit is then released from the current limit detection state. At the next pulse, the P-channel MOS driver transistor is turned on. However, the P-channel MOS driver transistor is immediately turned off in the case of an over current state. When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a few milliseconds and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the P-channel MOS driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the EN3 pin, or by restoring power to the VIN2 pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM520 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
Limit < a few milliseconds Limitms
Current Limit LEVEL
ILx
0mA
VOUT3
VSS
Lx
VEN3 Restart
VIN1
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the VOUT3 pin. In case where output is accidentally shorted to the ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN3 pin, or by restoring power supply to the VIN2 pin. When sharp load transient happens, a voltage drop at the VOUT3 pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT3 voltage.
When the VIN2 pin voltage becomes 1.4V or lower, the P-channel MOS driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation.
14/43
XCM520 Series
OPERATIONAL EXPLANATION (Continued)
In the PFM control operation, until coil current reaches to a specified level (IPFM), the IC keeps the P- channel MOSFET on. In this case, on-time (tON) that the P-channel MOSFET is kept on can be given by the following formula. tON= L IPFM (VIN2 VOUT3) IPFM In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it's possible for P-channel MOS driver transistor to be turned off even when coil current doesn't reach to IPFM. IPFM
Ton
PFM Duty Limit PFM
Lx I PFM ILx
IPFM
Lx
fOSC
IPFM ILx
IPFM
0mA
0mA
< CL High Speed Discharge > XCM520AE/ XCM5AF/XCM520AG/XCM520AH series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as ( =C x R), discharge time of the output voltage after discharge via the N-channel transistor is calculated by the following formula. V =VOUT3(E) e -t / or t = Ln (VOUT3(E) / V)
Where; V : Output voltage after discharge VOUT3(E) : Output voltage t: Discharge time :C R C= Capacitance of Output capacitor (CL) R= CL auto-discharge resistance
100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 CL=10uF CL=20uF CL=50uF
15/43
XCM520 Series
OPERATIONAL EXPLANATION (Continued)
Voltage Regulator BLOCK
The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFETs, which are connected to the VOUT pin, are then driven by the subsequent output signal. The output voltages at the VOUT pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the EN pin's signal.
< Low ESR Capacitors > With the XCM520 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that output capacitor (CL) is connected as close as possible to the output pins (VOUT) and the VSS pin. Please use an output capacitor with a capacitance value of at least 1 F. Also, please connect an input capacitor (CIN1) of 1 F between the VIN1 pin and the VSS pin in order to ensure a stable power input. < Current Limiter, Short-Circuit Protection > The XCM520 series includes a combination of a fixed current limiter circuit and a fold-back circuit which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the fold-back circuit start to operate, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows. < EN Pins > The IC's internal circuitry can be shutdown via the signal from the EN pin with the XCM520 series. In shutdown state, output at the VOUT pin will be pulled down to the VSS level via R1 and R2. The operational logic of the IC's EN pin is selectable (please refer to the selection guide). Note that as the standard type's regulator 1 and 2 are both ' High Active/No Pull Down', operations will become unstable with the EN pin open. Although the EN pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the EN pin input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN1 voltage or a VSS voltage input at the EN pin. If this IC is used with the correct specifications for the EN pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.
16/43
XCM520 Series
NOTES ON USE
1. The XCM520 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. 4. 5. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods.
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk = (VIN2-VOUT3)x OnDuty /(2xLxfOSC) + IOUT L: Coil Inductance Value fOSC: Oscillation Frequency 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver transistor turns off. During the time until it detects limit current and before the built-in P-channel MOS driver transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. 9. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. Use of the IC at voltages below the recommended voltage range may lead to instability.
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the P-channel MOS driver transistor. 12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the VOUT3 pin is shorted to the GND pin, when P-channel MOS driver transistor is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N-channel MOS driver transistor is ON, there is almost no potential difference at both ends of the coil since the VOUT3 pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. Current flows into P-channel MOS driver transistor to reach the current limit (ILIM). The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-channel MOS driver transistor. Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. Lx oscillates very narrow pulses by the current limit for several ms. The circuit is latched, stopping its operation.
# ms
17/43
XCM520 Series
NOTE ON USE (Continued)
13. 14. 15. In order to stabilize VIN2 voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN2 and VSS pins. High step-down ratio and very light load may lead an intermittent oscillation. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual design.
VOUT3=3.3V, fOSC=1.2MHz VIN2=3.7V, IOUT3=100mA

CH1:Lx 5V/div
L : 4.7 CIN2 : 4.7 CL3 : 10
F(NR4018) F(Ceramic) F(Ceramic)
CH2:VOUT3 20mV/div
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature, output voltage, oscillation frequency, and L value are not adequate. In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even if using the L values listed below.
VOUT3=3.3V, fOSC=1.2MHz VIN2=4.0V,IOUT3=180mA CH1:Lx 2.0V/div
The Range of L Value
fOSC 3.0MHz

VOUT 0.8V VOUT3 4.0V 1.0 3.3 4.7 VOUT3 2.5V 2.5V VOUT3
L Value H H H 2.2 6.8 6.8 H H H
L : 1.5
F(NR3015) F(Ceramic) F(Ceramic)
1.2MHz
CH2:VOUT3 20mV/div
CIN2 : 4.7 CL3 : 10
*When a coil less value of 4.7 H is used at fOSC=1.2MHz or when a coil less value of 1.5H is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current.
18/43
XCM520 Series
NOTE ON USE (Continued)
Note on use of pattern layouts
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. The capacitor (CIN) should be connected as close as possible to the VIN and VSS pins. When wiring impedance is high, noise propagation by output current or phase discrepancy occur which results in unstable operating. In this case, please reinforce VIN and VSS rails. If the operation is still unstable, please increase input capacitance CIN. 3. With comparison to the separate product usage, the two chips are placed in adjacent in the package so heat generation Is influenced each other. Please evaluate and verify in the actual design.
Instructions of pattern layouts
In order to stabilize VIN1 VIN2 VOUT1 VOUT2 VOUT3, we recommend that a by-pass capacitor (CIN1 CIN2 CL1 CL2 CL3) be connected as close as possible to the VIN1 VIN2 VOUT1 VOUT2 VOUT3 and VSS pin. 2. Please mount each external component as close to the IC as possible. 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 4. VSS AGND PGND VSS ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 5. Heat is generated because of the output current (IOUT) and ON resistance of driver transistors. 1.
Reference Pattern Layout
TO EX
AGND
VOUT 3
L
XCM52 0
Lx
V er . 1 . O USP 12 B
CL 3
PGND
EN3
MODE
V l N1 V l N2
1
C l N2
3
IC
CL1
EN1
GND
C l N1
CL 2
2
4
GND1
VOUT 1
VOUT 2
E N2
# 95
Front
Ceramic Capacitor
Back
Inductor
19/43
XCM520 Series
TEST CIRCUITS
Circuit No.1 Circuit No.2
A
1F
VIN2 EN3
Lx VOUT3
* External Components L : 1.5H (NR3015) 3.0MHz 4.7H (NR4018) 1.2MHz CIN2 : CL3 : 4.7F (ceramic) 10F (ceramic)
AGND
PGND
EN1 VSS VOUT1
VIN1 EN2 VOUT2
Circuit No.3
Wave Form Measure Point VIN2 EN3 1F AGND PGND Lx VOUT3 Rpulldown 200
Circuit No.4
VIN2 EN3 1F AGND PGND Lx VOUT3
V
100mA
EN1 VSS VOUT1
VIN1 EN2 VOUT2
EN1 VSS VOUT1
VIN1 EN2 VOUT2
Circuit No.5
ILEAKH
Circuit No.6
Wave Form Measure Point VIN2 EN3 1F AGND PGND Lx VOUT3
IENH 1F
VIN2
Lx VOUT3
A
IENL
AI
EN3
LEAKL
V
ILIM
AGND
PGND
EN1 VSS VOUT1
VIN1 EN2 VOUT2
EN1 VSS VOUT1
VIN1 EN2 VOUT2
Circuit No.7
Wave Form Measure Point VIN2 EN3 1F AGND PGND Lx ILAT VOUT3 Rpulldown 1
Circuit No.8
ILx VIN2 EN3 1F AGND PGND Lx VOUT3
A
EN1 VSS VOUT1
VIN1 EN2 VOUT2
EN1 VSS VOUT1
VIN1 EN2 VOUT2
Circuit No.9
20/43
XCM520 Series
TEST CIRCUITS (Continued)
Circuit No10
EN1/EN2 Active HighEN = VIN1 Active LowEN = VSS
Circuit No11
EN1/EN2 Active HighEN = VSS Active LowEN = VIN1
VIN2 EN3 AGND Lx VOUT3 PGND VOUT1 VIN1 EN1 EN2 VSS VOUT2
A
CIN1, CL1, CL2 : 1 F (ceramic)
Circuit No12
Circuit No13
VIN1=[VOUT(T)+1.0]VDC+0.5Vp-pAC
VIN2 EN3 AGND Lx VOUT3 PGND VOUT1 VIN1 EN1 EN2 VSS VOUT2 VIN1 EN1 EN2 VOUT2 VSS VIN2 EN3 AGND Lx VOUT3 PGND VOUT1
IOUT=30mA
A
A
CL1
IOUT1
V
A
IOUT=30mA CL2 IOUT2 V
V
EN1/EN2 Active High (pull-down, without resistance) VR1 Supply Current, EN1=ON, EN2=OFF VR2 Supply Current, EN1= OFF, EN2=ON Active High: ON=VIN1, OFF=VSS Active Low: ON=VSS, OFF=VIN1
EN1/EN2 VR1 PSRR EN1=ON, EN2=OFF VR2 PSRR EN1=OFF, EN2=ON Active High: ON=VIN1, OFF=VSS Active Low: ON=VSS, OFF=VIN1
CL1, CL2 : 1 F (ceramic)
Circuit No14
EN1/EN2 EN1"H" Level Current EN1=VIN1 Level EN2"H" Level Current EN2=VIN1 Level EN1"L" Level Current EN1= VSS EN2"L" Level Current EN2=VSS
CIN1 : 1 F (ceramic)
* The EN which is not measured is in operation sop mode. Active High: VSS Active Low: measuring VIN1 Level
21/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS
DC/DC Block
(1) Efficiency vs. Output Current VOUT3=1.8V, fOSC=1.2MHz
L=4.7
100 90 80 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current:I OUT3(mA) 3.6V
VOUT3=1.8V, fOSC=3.0MHz
F
100 90 80 Efficency:EFFI(%)
H(NR4018), CIN2=4.7
F, CL3=10
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
PWM/PFM Automatic Sw itching
PWM/PFM Automatic Switching Control
Efficency:EFFI(%)
70
VIN2= 4.2V
PWM Control VIN2= 4.2V 3.6V
70 60 50 40 30 20 10 0 0.1 1 10 100 1000 VIN2= 4.2V 3.6V PWM Control VIN2= 4.2V 3.6V
Output Current:I OUT3(mA)
(2) Output Voltage vs. Output Current VOUT3=1.8V, fOSC=1.2MHz
L=4.7
2.1 2 1.9 1.8 1.7 PWM Control 1.6 1.5 0.1 1 10 100 1000 PWM/PFM Automatic Switching Control VIN24.2V,3.6V
VOUT3=1.8V, fOSC=3.0MHz
F
2.1 2 Output Voltage:VOUT3(V) 1.9 1.8
VIN24.2V,3.6V PWM/PFM Automatic Switching Control
H(NR4018), CIN2=4.7
F, CL3=10
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
Output Voltage:VOUT3(V)
1.7
PWM Control
1.6 1.5 0.1 1 10 100 1000
Output Current:I OUT3(mA)
Output Current:I OUT3(mA)
(3) Ripple Voltage vs. Output Current VOUT3=1.8V, fOSC=1.2MHz
L=4.7
100 80 60 40 20 0 0.1 1 10 100 Output Current:IOUT 3(mA) 1000
PWM/PFM Automatic Switching Control VIN24.2V 3.6V
Ripple Voltage:Vr(mV)
VOUT3=1.8V, fOSC=3.0MHz
F, CL3=10 F
100
H(NR4018), CIN2=4.7
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
Ripple Voltage:Vr(mV)
80
PWM Control VIN24.2V,3.6V
60
PWM Control VIN24.2V,3.6V
PWM/PFM Automatic Switching Control VIN24.2V 3.6V
40
20
0 0.1 1 10 100 1000 Output Current:I OUT3(mA)
22/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(4) Oscillation Frequency vs. Ambient Temperature VOUT3=1.8V, fOSC=1.2MHz
L=4.7
1.5 Oscillation Frequency : OSC (MHz)
Oscillation Frequency : OSC (MHz)
VOUT3=1.8V, fOSC=3.0MHz
F
3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 -50 -25 0 25 50 75 100
VIN=3.6V
H(NR4018), CIN2=4.7
F, CL3=10
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
1.4
VIN2=3.6V
1.3 1.2 1.1 1 0.9 0.8 -50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
Ambient Temperature : Ta ()
(5) Supply Current vs. Ambient Temperature VOUT3=1.8V, fOSC=1.2MHz
40 35 Supply Current : I DD (A) 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100
VIN2=4.0V VIN2=6.0V
VOUT3=1.8V, fOSC=3.0MHz
40 35 Supply Current : I DD (A) 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100
VIN2=4.0V VIN2 =6.0V
Ambient Temperature : Ta ( )
Ambient Temperature : Ta ( )
(6) Output Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz
2.1
VIN2=3.6V
(7) UVLO Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz
1.8 1.5 UVLO Voltage : VUVLO (V) 1.2 0.9 0.6 0.3 0
EN3=VIN2
Output Voltage : VOUT3 (V)
2 1.9 1.8 1.7 1.6 1.5 -50 -25 0 25 50 75 100
-50
-25
0
25
50
75
100
Ambient Temperature : Ta ()
Ambient Temperature : Ta ( )
23/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(8) EN "H" Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz (9) EN" L" Voltage vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz
EN "H" Voltage: VENH (V)
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () EN "L" Voltage: VENL (V) V IN2=5.0V
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta () V IN2=3.6V V IN2=5.0V
V IN2=3.6V
(10) Soft Start Time vs. Ambient Temperature VOUT3=1.8V, fOSC=3.0MHz
L=4.7
5
VOUT3=1.8V, fOSC=3.0MHz
F
5
H(NR4018), CIN2=4.7
F, CL3=10
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
Soft Start Time : tSS (ms)
Soft Start Time : tSS (ms)
4
4
3
VIN2 =3.6V
3
VIN2 =3.6V
2
2
1
1
0 -50 -25 0 25 50 75 100
0 -50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
Ambient Temperature : Ta ()
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage VOUT3=1.8V, fOSC=3.0MHz
Lx SW ON Resistance: R ,RLxL () LxH 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 Input Voltage: V IN2 (V) Pch on Resistance
Nch on Resistance
24/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(12) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Rise Wave Form VOUT3=1.2V, fOSC=1.2MHz
L=4.7 H (NR4018), CIN2=4.7 F, CL3=10 F L=1.5
VOUT3=3.3V, fOSC=3.0MHz
H (NR3015), CIN2=4.7 F, CL3=10 F
VIN2=5.0V IOUT3=1.0mA
VIN2=5.0V IOUT3=1.0mA
VOUT3 0.5V/div
VOUT3 1.0V/div
EN3 0.0V
1.0V
EN3 0.0V
1.0V
100
s/div
100
s/div
(13) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, Soft-Start Time vs. Ambient Temperature VOUT3=1.2V, fOSC=1.2MHz VOUT3=3.3V, fOSC=3.0MHz
L=4.7
500 V IN2=5.0V IOUT 3=1.0mA
H(NR4018), CIN2=4.7
F, CL3=10
F
500
L=1.5
H(NR3015), CIN2=4.7
F, CL3=10
F
Soft Start Time : t SS (s)
300
Soft Start Time : t SS (s)
400
400
V IN2=5.0V IOUT 3=1.0mA
300
200
200
100
100
0 -50
-25
0
25
50
75
100
0 -50
-25
0
25
50
75
100
Ambient Temperature: Ta ()
Ambient Temperature: Ta ( )
(14) XCM520AE/ XCM520AF/ XCM520AG/ XCM520AH Series, CL Discharge Resistance vs. Ambient Temperature VOUT3=3.3V, fOSC=3.0MHz
600
Resistance : RDCHG ()
500 V IN2=6.0V
CL3 Aoto - Discharge
400
300 V IN2=4.0V
200
100 -50
-25
0
25
50
75
100
Ambient Temperature: Ta ( )
25/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(15) Load Transient Response VOUT3=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control) L=4.7 H(NR4018), CIN2=4.7 F(ceramic), CL3=10 F(ceramic), Topr=25 VIN2=3.6V, EN3=VIN2
IOUT3 =1mA
100mA
IOUT3=1mA
300mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div
2ch VOUT3: 50mV/div
50 IOUT3 =100mA 1mA
s/div IOUT3 =300mA 1mA
50 s/div
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div 200 s/div
2ch VOUT3: 50mV/div 200 s/div
26/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(15) Load Transient Response (Continued) VOUT3=1.2V, fOSC=1.2MHz(PWM Control) L=4.7 H(NR4018), CIN2=4.7 F(ceramic), CL3=10 F(ceramic), Topr=25 VIN2=3.6V, EN3=VIN2
IOUT3=1mA 100mA IOUT3=1mA 300mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT 3: 50mV/div
2ch VOUT3: 50mV/div
50 IOUT3=100mA 1mA
s/div IOUT3=300mA 1mA
50 s/div
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div 200 s/div
2ch VOUT3: 50mV/div 200 s/div
27/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(15) Load Transient Response (Continued) VOUT3=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control) L=1.5 H(NR3015), CIN2=4.7 F(ceramic), CL3=10 F(ceramic),Topr=25 VIN2=3.6V, EN=VIN2
IOUT3=1mA 100mA IOUT3=1mA 300mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div
2ch VOUT3: 50mV/div
50
s/div
50 s/div
IOUT3=100mA
1mA
IOUT3=300mA
1mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div 200 s/div
2ch VOUT3: 50mV/div 200 s/div
28/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
DCDC Block (Continued)
(15) Load Transient Response (Continued) VOUT3=1.8V, fOSC=3.0MHz(PWM Control) L=1.5 H(NR3015), CIN2=4.7 F(ceramic), CL3=10 F(ceramic), Topr=25 VIN2=3.6V, EN1=VIN2
IOUT3=1mA 100mA IOUT3=1mA 300mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div
2ch VOUT3: 50mV/div
50
s/div
50
s/div
IOUT3=100mA
1mA
IOUT3=300mA
1mA
1ch: IOUT3
1ch: IOUT3
2ch VOUT3: 50mV/div 200 s/div
2ch VOUT3: 50mV/div 200 s/div
29/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block
(1) Output Voltage vs. Output Current VOUT=0.8V
VIN1=1.8V, CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=0.8V
F(ceramic), CL=1 F(ceramic)
1.0 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 350
Output Current: IOUT (mA)
1.0 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 350
Output Current: IOUT (mA)
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Topr= 85 = 25 =-40
VIN1 = = = =
6.0V 3.8V 1.8V 1.5V
VOUT=2.85V
VIN1=3.85V, CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=2.85V
F(ceramic), CL=1 F(ceramic)
4.0 3.5
Output Voltage: VOUT (V) Output Voltage: VOUT (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
0 50 100 150 200 250 300 350
3.0 2.5 2.0 1.5 1.0 0.5 0.0
Output Current: IOUT (mA)
Topr= 85 = 25 =-40
VIN1 = 6.0V = 4.0V =3.15V
0
50
100
150
200
250
300
350
Output Current: IOUT (mA)
VOUT=3.0V
VIN1=4.0V, CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=3.0V
F(ceramic), CL=1 F(ceramic)
4.0 3.5
Output Voltage: VOUT (V) Output Voltage: VOUT (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
0 50 100 150 200 250 300 Output Current: IOUT (mA) 350
3.0 2.5 2.0 1.5 1.0 0.5 0.0 Topr= 85 = 25 =-40
VIN1 = 6.0V = 4.0V = 3.3V
0
50
100
150
200
250
300
350
Output Current: IOUT (mA)
30/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(1) Output Voltage vs. Output Current (Continued) VOUT=5.0V
VIN1=4.0V, CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=5.0V
F(ceramic), CL=1 F(ceramic)
6.0 5.0
Output Voltage: VOUT (V)
6.0 5.0
Output Voltage: VOUT (V)
4.0 3.0 2.0 1.0 0.0 0 50 100 150 200 250 300 350
Output Current: IOUT (mA)
4.0 3.0 2.0 1.0 0.0 0
Topr= 85 = 25 =-40
VIN1 = 6.0V = 5.3V
50
100
150
200
250
300
350
Output Current: IOUT (mA)
(2) Output Voltage vs. Input Voltage VOUT=0.8V
Ta=25 , CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=0.8V
F(ceramic), CL=1 F(ceramic)
1.2 1.1
Output Voltage: VOUT (V)
0.90 0.85
Output Voltage: VOUT (V)
1.0 0.9 0.8 0.7 0.6 0.5 0.5 1.0 1.5 2.0 2.5
Input Voltage: VIN1 (V)
0.80 0.75 0.70 0.65 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Input Voltage: VIN1 (V)
IOUT = 0mA = 30mA =100mA
I OUT = 0mA = 30mA =100mA
VOUT=2.85V
Ta=25 , CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=2.85V
F(ceramic), CL=1 F(ceramic)
3.05 2.85
Output Voltage: VOUT (V) Output Voltage: VOUT (V)
2.95 2.90 2.85 2.80 2.75 2.70
2.85
Input Voltage: VIN1 (V)
2.65 2.45 2.25 2.05 2.35 IOUT = 0mA = 30mA =100mA
IOUT = 0mA = 30mA =100mA
3.35
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage: VIN1 (V)
31/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(2) Output Voltage vs. Input Voltage (Continued) VOUT=3.0V
Ta=25 , CIN1=1 F(ceramic), CL=1 F(ceramic) Ta=25 , CIN1=1
VOUT=3.0V
F(ceramic), CL=1 F(ceramic)
3.2 3.0
Output Voltage: VOUT (V)
3.10 3.05
Output Voltage: VOUT (V)
2.8 2.6 2.4 2.2 2.5 3.0
Input Voltage: VIN1 (V)
3.00 2.95 2.90 2.85
IOUT = 0mA = 30mA =100mA
IOUT = 0mA = 30mA =100mA
3.5
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage: VIN1 (V)
VOUT=5.0V
Ta=25 , CIN1=1 F(ceramic), CL=1 F(ceramic)
5.10 5.05 5.00 4.95 4.90 4.85
VOUT=5.0V
Ta=25 , CIN1=1 F(ceramic), CL=1 F(ceramic)
5.2 5.0 4.8 4.6 4.4 4.2 4.5 5.0 Input Voltage: VIN1 (V) 5.5
Output Voltage: VOUT (V)
I OUT = 0mA = 30mA =100mA
Output Voltage: VOUT (V)
IOUT = 0mA = 30mA =100mA
5.5
6.0
Input Voltage: VIN1 (V)
(3) Dropout Voltage vs. Output Current VOUT=0.8V
CIN1=1 F(ceramic), CL=1 F(ceramic) CIN1=1
VOUT=2.85V
F(ceramic), CL=1 F(ceramic)
1.0
Dropout Voltage: Vdif (mV) Dropout Voltage: Vdif (mV)
0.5
0.8 0.6 0.4 0.2 0.0 0
Topr = 85 = 25 = -40
0.4 0.3 0.2 0.1 0.0 Topr = 85 = 25 = -40
50 100 150 Output Current: IOUT (mA)
200
0
50
100
150
200
Output Current: IOUT (mA)
32/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(3) Dropout Voltage vs. Output Current (Continued) VOUT=3.0V
CIN1=1 F(ceramic), CL=1 F(ceramic) CIN1=1
VOUT=5.0V
F(ceramic), CL=1 F(ceramic)
0.5 0.4 0.3 0.2 0.1 0.0 0 50 100 150 200
Output Current: IOUT (mA)
0.5 0.4 0.3 0.2 0.1 0.0 0 50 100 150 200
Output Current: IOUT (mA)
Dropout Voltage: Vdif (mV)
Dropout Voltage: Vdif (mV)
Topr-40 25 85
Topr-40 25 85
(4) Supply Current vs. Input Voltage VOUT=0.8V
VOUT=2.85V
100 80
100 80
Topr= 85 = 25 =-40
Supply Current: ISS ( A)
Supply Current: ISS ( A)
60 40 20 0 0 1 2 3
60 40 20 0
Topr= 85 = 25 =-40
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
VOUT=3.0V
100 80
100 80
VOUT=5.0V
Supply Current: ISS ( A)
60 40 20 0 0 1 2 3
Topr= 85 = 25 =-40
Supply Current: ISS ( A)
60 40 20 0 Topr= 85 = 25 =-40
4
5
6
0
1
2
3
4
5
6
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
33/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(5) Output Voltage vs. Ambient Temperature VOUT=0.8V
VIN1=1.8V, CIN1=1
0.84
VOUT=2.85V
VIN1=4.0V, CIN1=1
2.95
F(ceramic), CL=1
F(ceramic)
F(ceramic), CL=1
F(ceramic)
Output Voltage: VOUT (V)
0.80 IOUT= 0mA = 10mA = 30mA =100mA -50 -25 0 25 50 75 100
Output Voltage: VOUT (V)
0.82
2.90
2.85 IOUT= 0mA = 10mA = 30mA =100mA
0.78
2.80
0.76
2.75 -50
-25
0
25
50
75
100
Ambient Temperature: Ta (
)
Ambient Temperature: Ta (
)
VOUT=3.0V
VIN1=4.0V, CIN1=1
3.10
VOUT=5.0V
F(ceramic) VIN1=6.0V, CIN1=1
5.20
F(ceramic), CL=1
F(ceramic), CL=1
F(ceramic)
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
3.05
5.10
3.00 IOUT= 0mA = 10mA = 30mA =100mA
5.00 IOUT= 0mA = 10mA = 30mA =100mA
2.95
4.90
2.90 -50
-25
0
25
50
75
100
4.80 -50
-25
0
25
50
75
100
Ambient Temperature: Ta (
)
Ambient Temperature: Ta (
)
(6) Supply Current vs. Ambient Temperature VOUT=0.8V
VIN1=1.8V
30 28
30 28
VOUT=2.85V
VIN1=3.85V
Supply Current: ISS ( A)
26 24 22 20 -50
Supply Current: ISS ( A)
-25 0 25 50 75 100
26 24 22 20 -50
-25
0
25
50
75
100
Ambient Temperature: Ta (
)
Ambient Temperature: Ta (
)
34/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(6) Supply Current vs. Ambient Temperature (Continued) VOUT=3.0V
VIN1=4.0V
VOUT=5.0V
VIN1=6.0V
30 28
Supply Current: ISS ( A) Supply Current: ISS ( A)
30 28 26 24 22 20 -50
26 24 22 20 -50
-25
0
25
50
75
)
100
-25
0
25
50
75
)
100
Ambient Temperature: Ta (
Ambient Temperature: Ta (
(7) Input Transient Response VOUT=0.8V
tr=tf=5 s, CL=1 F(ceramic), IOUT=100 A tr=tf=5
VOUT=0.8V
s, CL=1 F(ceramic), IOUT=30mA
1.00 0.95
Output Voltage: VOUT (V)
4
Output Voltage: VOUT (V)
1.00 0.95 0.90 0.85 0.80
Output Voltage Input Voltage
4 3 2 1 0 -1 -2
Time (40 s/div)
Input Voltage: VIN1 (V)
0.90 0.85 0.80
Input Voltage
2 1 0
Output Voltage
0.75 0.70
Time (200 s/div)
-1 -2
0.75 0.70
VOUT=0.8V
tr=tf=5 s, CL=1 F(ceramic), IOUT=100mA tr=tf=5
VOUT=2.85V
s, CL=1 F(ceramic), IOUT=100 A
1.00 0.95
Output Voltage: VOUT (V)
4
Output Voltage: VOUT (V)
3.05 3.00 2.95 2.90 2.85
Output Voltage Input Voltage
6 5 4 3 2 1 0
Time (200 s/div)
0.90 0.85 0.80
Input Voltage
2 1 0
Output Voltage
0.75 0.70
Time (40 s/div)
-1 -2
2.80 2.75
Input Voltage: VIN(V) Input Voltage: VIN1 (V)
3
Input Voltage: VIN1 (V)
Input Voltage: VIN1 (V)
3
35/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(7) Input Transient Response (Continued) VOUT=2.85V
tr=tf=5 s, CL=1 F(ceramic), IOUT=30mA tr=tf=5
VOUT=2.85V
s, CL=1 F(ceramic), IOUT=100mA
3.05 3.00
Output Voltage: VOUT (V)
6 5
Input Voltage
3.05 3.00
Output Voltage: VOUT (V) Input Voltage: VIN1 (V)
6 5
Input Voltage: VIN1 (V) Input Voltage: VIN1 (V) Input Voltage: VIN1 (V)
Input Voltage
2.95 2.90 2.85
4 3 2
2.95 2.90 2.85
4 3 2
Output Voltage
Output Voltage
2.80 2.75
Time (40 s/div)
1 0
2.80 2.75
Time (40 s/div)
1 0
VOUT=3.0V
tr=tf=5 s, CL=1 F(ceramic), IOUT=100 A tr=tf=5
VOUT=3.0V
s, CL=1 F(ceramic), IOUT=30mA
3.20 3.15
Output Voltage: VOUT (V)
6 5
Input Voltage
3.20 3.15
Output Voltage: VOUT (V) Input Voltage: VIN1 (V)
6 5
Input Voltage
3.10 3.05 3.00
4 3 2
3.10 3.05 3.00
4 3 2
Output Voltage
Output Voltage
2.95 2.90
Time (200 s/div)
1 0
2.95 2.90
Time (40 s/div)
1 0
VOUT=3.0V
tr=tf=5 s, CL=1 F(ceramic), IOUT=100mA tr=tf=5
VOUT=5.0V
s, CL=1 F(ceramic), IOUT=100 A
3.20 3.15
Output Voltage: VOUT (V)
6 5
Output Voltage: VOUT (V)
5.20 5.15
Input Voltage: VIN1 (V)
8 7
Input Voltage
3.10 3.05 3.00
Input Voltage
4 3 2
5.10 5.05 5.00
6 5 4
Output Voltage
Output Voltage
2.95 2.90
Time (40 s/div)
1 0
4.95 4.90
Time (200 s/div)
3 2
36/43
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(7) Input Transient Response (Continued) VOUT=5.0V
tr=tf=5 s, CL=1 F(ceramic), IOUT=30mA tr=tf=5
VOUT=5.0V
s, CL=1 F(ceramic), IOUT=100mA
5.20 5.15
Output Voltage: VOUT (V)
8 7
Input Voltage: VIN1 (V)
Input Voltage
5.20 5.15
Output Voltage: VOUT (V)
8 7
Input Voltage
5.10 5.05 5.00
6 5 4
5.10 5.05 5.00
6 5 4
Output Voltage
Output Voltage
4.95 4.90
Time (40 s/div)
3 2
4.95 4.90
Time (40 s/div)
3 2
(8) Load Transient Response VOUT=0.8V
VIN1=1.8V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
VOUT=0.8V
VIN1=1.8V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
0.90 0.80
Output Voltage
250 200 150 100
Output Current
0.90 0.80
Output Voltage Output Voltage
250 200 150 100mA
Output Current Output Current
Output Current: IOUT (mA)
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
0.70 0.60 50mA 0.50 10mA 0.40
Time (40 s/div)
0.70 0.60 0.50 10mA 0.40
Time (40 s/div)
100 50 0
50 0
VOUT=2.85V
VIN1=4.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
VOUT=2.85V
VIN1=4.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
2.95 2.85
Output Voltage: VOUT (V)
Output Voltage
250 200
Output Current: IOUT (mA) Output Voltage: VOUT (V)
2.95 2.85 Output Voltage Output Voltage 2.75 2.65 2.55 10mA 2.45
Time (40 s/div)
250 200 150 100mA
Output Current Output Current
2.75 2.65
Output Current
150 100 50mA 10mA 50 0
Time (40 s/div)
100 50 0
2.55 2.45
37/43
Output Current: IOUTIOUT(mA) Output Current: (mA)
Output Current: IOUT (mA)
Input Voltage: VIN(V) Input Voltage: VIN1 (V)
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(8) Load Transient Response (Continued) VOUT=3.0V
VIN1=4.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
VOUT=3.0V
VIN1=4.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
3.10 3.00
Output Voltage: VOUT (V)
Output Voltage
250 200
Output Current: IOUT (mA) Output Voltage: VOUT (V)
3.10 3.00
Output Voltage
250 200 150 100mA
Output Current
2.90 2.80
Output Current
150 100 50mA 10mA 50 0
Time (40 s/div)
2.90 2.80 2.70 10mA 2.60
Time (40 s/div)
100 50 0
2.70 2.60
VOUT=5.0V
VIN1=6.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
VOUT=5.0V
VIN1=6.0V, tr=tf=5 s, CIN1=CL=1 F(ceramic)
5.10 5.00
Output Voltage: VOUT (V)
Output Voltage
250 200
Output Current: IOUT (mA) Output Voltage: VOUT (V)
5.10 5.00
Output Voltage
250 200 150 100mA
Output Current
4.90 4.80
Output Current
150 100 50mA 10mA 50 0
Time (40 s/div)
4.90 4.80 4.70 10mA 4.60
Time (40 s/div)
100 50 0
4.70 4.60
(9) Ripple Rejection Rate VOUT=0.8V
VIN1=1.8VDC+0.5Vp-pAC, IOUT=30mA, CL=1 F(ceramic)
VOUT=2.85V
VIN1=3.85VDC+0.5Vp-pAC, IOUT=30mA, CL=1 F(ceramic)
80
Ripple Rejection Ratio: PSRR (dB) Ripple Rejection Ratio: PSRR (dB)
80
60
60
40
40
20
20
0 0.01
0.1
1
10
100
0 0.01
0.1
1
10
100
Ripple Frequency: f(kHz)
Ripple Frequency: f(kHz)
38/43
Output Current: IOUT (mA)
Output Current: IOUT (mA)
XCM520 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Regulator Block (Continued)
(9) Ripple Rejection Rate (Continued) VOUT=3.0V
VIN1=4.0VDC+0.5Vp-pAC, IOUT=30mA, CL=1 F(ceramic)
VOUT=5.0V
VIN1=5.75VDC+0.5Vp-pAC, IOUT=30mA, CL=1 F(ceramic)
80
Ripple Rejection Ratio: PSRR (dB) Ripple Rejection Ratio: PSRR (dB)
80
60
60
40
40
20
20
0 0.01
0.1
1
10
100
0 0.01
0.1
1
10
100
Ripple Frequency: f(kHz)
Ripple Frequency: f(kHz)
(10) Cross Talk VOUT1 3.0V & VOUT2 2.85V
F(ceramic) VIN1=4.0V, CIN1=CL1=CL2=1
3.1
VR1 Output Voltage (3.0V)
500
Output Current: IOUT (mA)
3.0
Output Voltage: VOUT (V)
400 300
VR2 Output Voltage (2.85V)
2.9 2.8 2.7 2.6
Time (40 s/div)
200 100 0
100mA 10mA
VR1 Output Current
39/43
XCM520 Series
PACKAGING INFORMATION
USP-12B01
2.80.08
(0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25)
0.25 0.2 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05
1
2
3
4
5
6
12 11 10 9
1.20.1
1.20.1
8
7
UNIT: mm
0.70.05 0.70.05
USP-12B01 Reference Pattern Layout
1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25
USP-12B01 Reference Metal Mask Design
1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25
0 .45
0 .35
0 .35
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025
1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
1 .30 1 .60
0 .10 0 .10
0 .20
0 .50
0 .20
0 .15
0 .40
0 .15
40/43
0 .60 1 .10 1 .55
1 .30 1 .60
0 .60 1 .10 1 .55
XCM520 Series
PACKAGING INFORMATION (Continued)
USP-12B01 Power Dissipation Power dissipation data for the USP-12B01 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition: Ambient: Soldering: Board:
st nd rd th
Mount on a board Natural convection Lead (Pb) free Dimensions 40 x 40 mm (1600 mm in one side)
st 2
1 Layer: Land and a wiring pattern 2 Layer: Connecting to approximate 50% of the 1 heat sink 3 Layer: Connecting to approximate 50% of the 2 4 Layer: Noting Material: Thickness: Glass Epoxy (FR-4) 1.6 mm
nd
heat sink
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)
2.
Power Dissipation vs. Operating temperature
Only 1ch heating, Board Mount (Tj max = 125 )
Evaluation Board (Unit: mm)
Ambient Temperature 25 85
Power Dissipation PdmW 800 320
Pd-Ta Pd vs. Ta
Thermal Resistance (/W) 125.00
Power Dissipation: Pd (mW) PdmW
1000 800 600 400 200 0 25 45 65 85 105 125 Ta Ambient Temperature: Ta ( )
Both 2ch heating same time, Board Mount (Tj max = 125
)
Ambient Temperature 25 85
Power Dissipation PdmW 600 240
Pd-Ta Pd vs. Ta
Thermal Resistance (/W) 166.67
PowerPdmW Dissipation: Pd (mW)
1000 800 600 400 200 0 25 45 65 85 Ta Ambient Temperature: Ta ( ) 105 125
41/43
XCM520 Series
MARKING RULE
USP-12B01 represents product series MARK 1 PRODUCT SERIES XCM520 Series
1 2 3 4 5 6
12 11 10 9 8 7
represents combination of IC MARK A A A A A A A A A B C D E F G H PRODUCT SERIES XC6401FF**XC9235A**D XC6401FF**XC9235A**C XC6401FF**XC9236A**D XC6401FF**XC9236A**C XC6401FF**XC9235B**D XC6401FF**XC9235B**C XC6401FF**XC9236B**D XC6401FF**XC9236B**C
USP-12B01
represents combination of voltage for each IC (Sequence No.) MARK 1 2 3 4 PRODUCT SERIES XCM520**01** XCM520**02** XCM520**03** XCM520**04**
, represents production lot number 01 09 0A 0Z 11 9Z A1 A9 AA Z9 ZA ZZ repeated (G, I, J, O, Q, W excluded) * No character inversion used.
42/43
XCM520 Series
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.
43/43


▲Up To Search▲   

 
Price & Availability of XCM520AA03DR-G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X